Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action

C.H. Storch*† and P.H. Hoeger‡

*Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
†InfecoPharm Arzneimittel and Consilium GmbH, Von-Humboldt-Straße 1, D-64646 Heppenheim, Germany
‡Department of Paediatric Dermatology, Catholic Children’s Hospital Wilhelmsstift, Lilienconstrasse 130, D-22149 Hamburg, Germany

Summary

Infantile haemangiomas (IH) are the most common benign tumours of infancy. Although most IH are innocuous and 85–90% regress spontaneously, some may become life- or function-threatening and require immediate treatment. Previous standard therapeutic options include physical measures (laser surgery, cryosurgery) and systemic corticosteroids, in severe cases also vincristine, α-interferon or cyclophosphamide, all bearing the risk of serious side-effects. Oral propranolol is a very recent therapeutic option for complicated IH with impressive efficacy and generally good tolerance. The effects of propranolol on IH were discovered by chance, and very little is known about its mechanisms of action in IH. Here we present a summary of current knowledge of how propranolol interferes with endothelial cells, vascular tone, angiogenesis and apoptosis. Early, intermediate and long-term effects of propranolol on IH can be attributed to three different pharmacological targets. Early effects (brightening of the haemangioma surface within 1–3 days after start of therapy) are attributable to vasoconstriction due to decreased release of nitric oxide. Intermediate effects are due to the blocking of proangiogenic signals (vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinase 2/9) and result in growth arrest. Long-term effects of propranolol are characterized by induction of apoptosis in proliferating endothelial cells, and result in tumour regression.

Haemangiomas are the most common benign tumours of infancy, affecting 5–10% of all infants, and up to 30% of premature babies. They can be differentiated from vascular malformations by their dynamic growth and spontaneous regression (Fig. 1a). Although 85–90% of all infantile haemangiomas (IH) eventually undergo spontaneous involution, they can still cause disfigurement and serious complications depending on their location (obstruction of airways and vision), size (cardiac insufficiency, hypothyroidism), and speed of regression, which can be associated with painful ulcerations and haemorrhage. Standard treatment options for complicated haemangiomas include oral steroids, laser surgery, cryosurgery, or vincristine, interferon or cyclophosphamide in life-threatening cases. Each of these options has its restrictions and/or side-effects. In 2008, Léauté-Labrèze et al. described their serendipitous observation of an antiproliferative effect of propranolol on IH. Propranolol has since become the first choice of therapy for complicated IH, even though randomized controlled studies have not been finished yet and a generally accepted concept of how propranolol actually works in IH does not exist.

Here we present a summary of current knowledge of how propranolol interferes with endothelial cells, vascular tone, angiogenesis and apoptosis. Propranolol is a nonselective beta-adrenergic antagonist, which competitively inhibits β1- and β2-adrenoceptors with the same affinity. Propranolol is a pure antagonist without partial agonistic effects. On account of its lipophilic properties propranolol also exhibits certain membrane-stabilizing characteristics. α1-adrenoceptors are not antagonized by propranolol.

The following pharmacodynamic characteristics are discussed in this review as possible mechanisms of action of propranolol in IH: vasoconstriction, inhibition of angiogenesis and induction of apoptosis.

Vasoconstriction

The vascular tone is controlled by a complex interplay of various endogenous factors. The autonomic nervous system plays a key role in the control of the vascular tone: adrenaline can cause vasoconstriction (by activating α1-receptors) as well as...
vasodilation (by activating \(\beta_2\)-receptors). Depending on the partial pressures of oxygen and carbon dioxide, respectively, the vascular tone is either increased or decreased. It is further regulated by transmitters which either lead to vasoconstriction (e.g. endothelin-1, angiotensin II, vasopressin) or to vasodilation [e.g. prostacyclin, nitric oxide (NO), dopamine].

The vasodilatory effect of adrenaline by activating \(\beta_2\)-adrenoceptors is mediated by a cascade of signals (Fig. 2): \(\beta_2\)-adrenoceptors belong to the group of \(G_x\)-protein-coupled receptors\(^4\) and are expressed on endothelial cells.\(^5\) As soon as an agonist binds to the receptor, adenylyl cyclase is activated by the \(\alpha\)-subunit of the stimulatory \(G\)-protein. The adenylyl cyclase converts adenosine triphosphate into cyclic adenosine monophosphate (cAMP), which acts as a second messenger and diffuses into the cytosol where it activates the cAMP-dependent protein kinase A (PKA). PKA can in turn phosphorylate intracellular proteins and thus modulate their activity. In endothelial cells the activation of PKA leads to an activation of the endothelial NO synthase, which results in the formation and release of NO. NO diffuses into the vascular smooth muscle cell, where it leads to an activation of the soluble guanylate cyclase resulting in the formation of cyclic guanosine monophosphate (cGMP), which in turn activates protein kinase G (PKG, cGMP-dependent protein kinase). This activation of PKG finally induces relaxation of the vascular smooth muscle and vasodilatation.

Beta blockers without \(\alpha\)-antagonistic effects such as propranolol inhibit the vasodilation mediated by adrenaline via \(\beta\)-receptors and thus lead to vasoconstriction.\(^1\) In haemangiomas, vasoconstriction of supplying capillaries caused by propranolol induces a reduction of blood flow within the haemangioma which is associated with a visible change in colour and a palpable softening of the haemangioma. These effects can be observed within 1–3 days after the onset of therapy\(^3\) (Fig. 3).

### Inhibition of angiogenesis

#### Impact on the expression of proangiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor)

In the proliferative phase of IH endothelial cells exhibit increased expression of proliferating cell nuclear antigen, type IV collagenase, and proangiogenic factors, in particular vascular endothelial growth factor (VEGF) more than basic fibroblast growth factor (bFGF)\(^6\)–\(^11\) (Fig. 1b). VEGF could be detected in various cell types both on the protein level (immunohistochemistry) and at messenger RNA level (by reverse transcription–polymerase chain reaction): endothelial cells (so-called haemangioma-derived endothelial cells, HECs), pericytes and connective tissue cells. bFGF was also identified in mast cells.\(^1\) Serum levels of VEGF are elevated in infants during the proliferative phase of IH.\(^3\)\(^,\)\(^12\)\(^,\)\(^13\) Conversely, expression of VEGF and bFGF is significantly reduced during the involution phase as well as in completely regressed haemangiomas (involuting phase).\(^7\)\(^,\)\(^12\)\(^,\)\(^13\) Transforming growth factor-\(\beta\), an inhibitor of endothelial growth,\(^14\) is expressed only at a relatively low level both in the proliferation phase and the involutive phase,\(^7\) and tissue inhibitor of metalloproteinases (TIMP), also an inhibitor of angiogenesis,\(^14\) is expressed only during the involutive phase.\(^11\) These and other findings are evidence that IH result from a dysregulation of angiogenesis, characterized by an imbalance between pro- and antiangiogenic factors.\(^7\) The expression of VEGF is regulated by the transcription rate and changes in the stability of the mRNA.\(^15\) Physiologically, hypoxaemia leads to increased expression of VEGF. This effect is mediated by the transcription factor hypoxia-inducible factor (HIF)-1\(\alpha\); oxygen deficiency leads to an increase of the intracellular concentration of HIF-1\(\alpha\) in its active form. HIF-1\(\alpha\) induces the transcription of the VEGF gene. As a result, VEGF is secreted from the cell, diffuses into the surrounding tissue and induces proliferation of adjacent endothelial cells, which in turn leads to secretion of proteases necessary for reorganization of the extracellular matrix [e.g. matrix metalloproteinases (MMPs); see below], and the coordinated differentiation of vascular cells (endothelial cells, smooth muscle cells, pericytes) into functional
vessels (angiogenesis). The newly formed vessels improve local oxygen supply, which in turn leads to decreased intracellular concentration of the active form of HIF-1α and, as a result, reduces the expression of VEGF. Thus, under physiological conditions, angiogenesis is strictly controlled.\(^{13,16}\) As perinatal hypoxaemia has been identified as an important anti-angiogenetic factor in IH,\(^{17}\) increased production of HIF-1α and consecutively VEGF (as has been shown in proliferating IH\(^{14}\)) seems a ‘logical’ consequence.\(^{15,18,19}\)

There is evidence from recent publications that the expression of VEGF is not only controlled by the oxygen partial pressure in the tissue (via HIF-1α), but also by adrenergic...
stimulation (Fig. 2): as demonstrated in different in vitro and in vivo models catecholamines such as adrenaline and noradrenaline can induce the expression of VEGF.20–26 Src is a mediator downstream to PKA20 which belongs to a family of cytoplasmic tyrosine kinases involved in the control of diverse molecular processes. It activates the extracellular signal-related kinases (ERK)/mitogen-activated protein kinases (MAPK) cascade.26 ERK and MAPK are serine/threonine kinases phosphorylating nuclear transcription factors, thus regulating the expression of multiple genes involved in the control of cell proliferation. VEGF itself exerts its proangiogenic effects, at least partially, by activating the ERK/MAPK cascade.21,25 Thus, the proliferation of endothelial cells is stimulated via β1-adrenoceptors by two different mechanisms: (i) stimulation of β2-adrenoceptors directly leads to an activation of ERK/MAPK (probably via src as mediator)20 and (ii) it also induces increased release of VEGF, which itself can activate the ERK/MAPK cascade.21,25

Conversely, beta blockers like propranolol lead to a reduced expression of VEGF and thus to an inhibition of angiogenesis.20,22,24,26 Furthermore, it has been demonstrated in animal experiments that carvedilol, also a nonselective beta-antagonist like propranolol, reduces the expression of HIF-1α.27,28 Assuming that dysregulation of endothelial cell proliferation represents an important pathogenetic factor for IH, the anti-VEGF activity of beta blockers would explain their remarkable effect on proliferating haemangiomas. Interestingly, a similar effect has recently been demonstrated for corticosteroids,39 which have been the mainstay of IH therapy until now.

Impact on the expression of matrix metalloproteinases

MMPs are a family of soluble and membrane-anchored proteases involved in degradation and transformation of extracellular matrix proteins. They play a key role in different physiological and pathophysiological processes, e.g. cell proliferation, migration and adhesion, embryogenesis, wound healing and also in angiogenic processes relevant for tumour growth and metastasis.30 Under physiological conditions the activity of MMPs is strictly regulated on different levels: transcription, activation of inactive precursors (cymogens), interaction with components of the extracellular matrix and inhibition by endogenous inhibitors such as TIMPs.31

Elevated concentrations of MMP-2 and MMP-9 were found in tissue samples and in the blood of infants in the proliferative phase of haemangiomas.9,32 MMP-9 is important for the migration of endothelial cells and tubulogenesis.33 It has been shown that inhibition of MMP-9 impedes angiogenesis of human microvascular endothelial cells.34

There is ample evidence that the expression of MMP-9 and MMP-2 is regulated via β-adrenoceptors21,24,31,35 (Fig. 2). β-adrenoceptor agonists such as adrenaline or noradrenaline increase the expression of MMP-2 and MMP-9; this effect can be inhibited by propranolol.25,34,35 Reduced expression of MMP-9 by propranolol leads to an inhibition of tubulogenesis of endothelial cells13 and thus also provides a conclusive mechanism for the antiangiogenic effect of propranolol.

Induction of apoptosis in capillary endothelial cells of haemangiomas

Apoptosis is strictly regulated via a complex interplay of caspases, procaspases and proteins of the B-cell lymphoma 2 (bcl-2) family. During the proliferative phase the rate of apoptosis is low in IH. However, during the involution phase it increases by a factor of 5 while the expression of the apoptosis-inhibiting protein bcl-2 decreases in parallel.36 Only about one-third of the apoptotic cells are of endothelial origin.37 Blockade of β-adrenoceptors by propranolol can induce apoptosis of different cell types (Fig. 2) in vitro, e.g. endothelial cells38 or pancreas carcinoma cells,39 respectively. The β2-adrenoceptor was identified as probable receptor, as the β1-selective beta blocker metoprolol showed significantly lower apoptosis-inducing effects, and the β2-selective beta blocker butoxamine exhibited a considerably stronger induction of apoptosis compared with propranolol.39 The authors hypothesize that beta-adrenergic antagonists are capable of disengaging the inhibition of apoptosis caused by beta-adrenergic agonists (mediated by src, MAPK and caspase cascade), resulting in an increased apoptosis rate.39 Induction of apoptosis thus represents another possible mechanism of action of propranolol in the treatment of IH.

Conclusion

The striking effect of propranolol on growing IH can be attributed to three molecular mechanisms: vasoconstriction, inhibition of angiogenesis, and induction of apoptosis. They correspond to early (brightening of haemangioma surface), intermediate (growth arrest), and long-term (regression) clinical observations. Apoptosis is not complete, as partial regrowth of haemangiomas after discontinuation of propranolol has been observed. Propranolol has been used in young infants for a variety of indications (such as hypertension, congestive heart failure, supraventricular tachycardia, long QT-syndrome, thyrototoxicosis), at doses up to 8 mg kg⁻¹ daily.40 During 40 years of extensive clinical experience no serious cardiovascular event was recorded for children on chronic beta-blocker therapy.41 Complications of propranolol treatment of IH reported so far (hypotension, sinusbradycardia, hypoglycaemia)42 were not life-threatening, but certainly warrant careful monitoring of all infants with IH before and during propranolol therapy. These effects appear, however, minor compared with the serious side-effects of more ‘conventional’ antiangiogenic agents such as interferon-α, which is associated with spastic diplegia in up to 25%;43 or the serious side-effects of systemic corticosteroid therapy. Based on case reports and uncontrolled studies the effective dosage for propranolol for IH is 2 mg kg⁻¹ daily in three divided doses, and treatment should be continued until the end of the proliferation phase.5,44–46 However, to assess optimal dose and duration of treatment further studies are required.
Propranolol in haemangiomas, C.H. Storck and P.H. Hoeger

What's already known about this topic?

• Propranolol is a new therapeutic option with impressive efficacy for life- or function-threatening infantile haemangiomas (IH).

What does this study add?

• This review summarizes the current knowledge on the possible pharmacological targets of propranolol in IH and presents a conclusive model of the different molecular mechanisms of action involved.

Acknowledgments

This work was supported by InfectoPharm Arzneimittel und Consilium GmbH, D-64646 Heppenheim, Germany.

References